Bonded hydrogen in nanocrystalline silicon photovoltaic materials: Impact on structure and defect density
نویسندگان
چکیده
We have performed a detailed structural and optical investigation of hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by plasma-enhanced chemical vapor deposition. The microstructural properties of these thin films are characterized and interpreted physically based on the growth mechanism. Infrared spectroscopy reveals that the bonded hydrogen in a platelet-like configuration, which is believed to be located at grain boundaries, greatly affects oxygen incursions into nc-Si:H thin films, whereas electron spin resonance observations link these incursions to the introduction of dangling bond defects. Consequently, we propose that in nc-Si:H thin films, high bonded-hydrogen content in grain boundaries is of great importance in forming hydrogen-dense amorphous tissues around the small crystalline grains, i.e., compact grain boundary structures with good passivation. Such structures effectively prevent post-deposition oxidation of grain boundary surfaces, which might lead to the formation of dangling bond defects. VC 2011 American Institute of Physics. [doi:10.1063/1.3638712]
منابع مشابه
Investigation of HF/H2O2 Concentration Effect on Structural and Antireflection Properties of Porous Silicon Prepared by Metal-Assisted Chemical Etching Process for Photovoltaic Applications
Porous silicon was successfully prepared using metal-assisted chemical etching method. The Effect of HF/H2O2 concentration in etching solution as an affecting parameter on the prepared porosity type and size was investigated. Field emission electron microscopy (FE-SEM) confirmed that all etched samples had porous structure and the sample which was immersed into HF/H2O2 withmolar ratio of 7/3.53...
متن کاملEFFECTS OF TiO2 ADDITIVE ON ELECTROCHEMICAL HYDROGEN STORAGE PROPERTIES OF NANOCRYSTALLINE /AMORPHOUS Mg2Ni INTERMETALLIC ALLOY
Abstract: Mg2Ni alloy and Mg2Ni–x wt% TiO2 (x = 3, 5 and 10 wt %) composites are prepared by mechanical alloying. The produced alloy and composites are characterized as the particles with nanocrystalline/amorphous structure. The effects of TiO2 on hydrogen storage properties are investigated using anodic polarization and electrochemical impedance spectroscopy. It is demonstrated that the initia...
متن کاملCalculation of defect densities in nano-crystalline and amorphous silicon devices using differential capacitance measurements
A technique for determining trap densities as a function of energy in semiconductors is presented. Through differential capacitance measurements, trap states can be accurately measured and profiled within the bandgap as a function of energy. Measurements were carried out on samples made at the Microelectronic Research Center at Iowa State University. Hydrogen profiled nano-crystalline silicon s...
متن کاملTuning oxygen impurities and microstructure of nanocrystalline silicon photovoltaic materials through hydrogen dilution
As a great promising material for third-generation thin-film photovoltaic cells, hydrogenated nanocrystalline silicon (nc-Si:H) thin films have a complex mixed-phase structure, which determines its defectful nature and easy residing of oxygen impurities. We have performed a detailed investigation on the microstructure properties and oxygen impurities in the nc-Si:H thin films prepared under dif...
متن کاملInfluence of current density on refractive index of p-type nanocrystalline porous silicon
Porous Silicon (PS) layers have been prepared from p-type silicon wafers of (100) orientation. SEM, XRD, FTIR and PL studies were done to characterize the surface morphological and optical properties of PS. The porosity of the PS samples was determined using the parameters obtained from SEM images by geometric method. The refractive index values of the PS samples as a function of poros...
متن کامل